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OF RADIANT HEATING BY INHOMOGENEOUS HOT GASES

By

B. Krakow, H, J. Babrov, G. J. Maclay , and A. L. Shabott

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

Calculations of radiant heating by inhomogeneous hot gases require
knowledge of spectral transmittances of inhomogeneous optical paths.
Determination of these transmittances is a difficult problem that can
be attacked by means of the Curtis-Godson approximation.

We have tested the accuracy of the Curtis-Godson approximation
experimentally. Infrared spectral transmittances of inhomogeneous hot
samples of H-0 and CO, were measured. Each inhomogeneous hot gas specimen
consisted of two or three homogeneous zones in series. The transmittance
of each zone was measured, as was the transmittance of the entire multi-
zone assembly. The measured transmittance of each inhomogeneous path was
compared with a transmittance calculated from the homogeneous zonal trans-
mittances, using the Curtis-Godson approximation in conjunction with a
random band model. The measured and calculated inhomogeneous transmittances
agreed within about .01 to .02. The error appeared to be due more to the
band model theory than to the Curtis-Godson approximation.
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TECHNICAL MEMORANDUM X-53411

USE OF THE CURTIS-GODSON APPROXIMATION IN CALCULATIONS
OF RADIANT HEATING BY INHOMOGENEOUS HOT GASES

SUMMARY

Calculations of radiant heating by inhomogeneous hot gases require
knowledge of spectral transmittances of inhomogeneous optical paths.
Determination of these transmittances is a difficult problem that can
be attacked by means of the Curtis=-Godson approximation.

We have tested the accuracy ¢ £ the Curtis-Godson approximation
experimentally. Infrared spectral transmittances of inhomogeneous hot
samples of H-0 and CO- were measured. FEach inhomogeneous hot gas specimen
consisted of two or three homogeneous zones in series. The transmittance
of each zone was measured, as was the transmittance of the entire multi-
zone assembly. The measured transmittance of each inhomogeneous path was
compared with a transmittance calculated from the homogeneous zonal trans=
mittances, using the Curtis-Godson approximation in conjunction with a
random band model. The measured and calculated inhomogeneous transmittances
agreed within about .01 to .02. The error appeared to be due more to the
band model theory than to the Curtis-Godson approximation.

I. INTRODUCTION

The irradiance of any target by a hot gas is the integral of the
contributions from all spatial regions and spectral intervals. Spatial
variations are usually slow enough so that quadrature may be accomplished
using reasonably large intervals. However, in a straightforward numerical
integration, to obtain a reasonably accurate answer, the size of the wave
number interval in the spectral integration has to be made so small
(~ .01 cm~') as to make the calculation impractical. The reason the
wave number interval must be made small is that for a numerical integration
the integrand must be essentially constant (slowly varying) over each
increment of the independent variable. For the frequency integration,
this means that radiance must not change rapidly over the mesh size, Av.
But a typical spectral line has a half-width of the order of .0l cm~! at
a pressure of 0.1 atmosphere, so that the size of Av should be less than
.01 cm~! for a straightforward calculation at this pressure. Band models
were invented to get around this difficulty'. The band model relies om
the substitution in the spectral interval of interest of an equivalent
and mathematically tractable spectrum for the true spectrum.




Tourin and Krakow” have shown that spectral irradiance of the target
along any line of sight depends only on the local Planck blackbody functions
and the transmittances of the optical paths. The Planck functions can be
considered constant over reasonably large spectral intervals. Determination
of transmittance is, therefore, the only barrier to the use of large
spectral intervals in radiance calculations.

Infrared spectral transmittances of gases are usually measured and
reported for homogeneous samples. Band models have been used quite
successfully on such homogeneous samples. In most practical problems,
however, hot specimens have gradients of temperature, pressure, and
concentration. The transmittances of these inhomogeneous gases are
needed for the calculation of their radiance.

A number of methods have been proposed for determining transmittances
of inhomogeneous gases. There is, of course, the Beer-Lambert law that
works so well for liquids but is not good for gases. Babrov and Maclay®
obtained fairly good results for inhomogeneous hot gases by using Sakai's
approximate overlap correction®*. 1In this paper we will examine another
method, namely, the Curtis-Godson approximationl’S. Meteorologists have
found this method useful for calculating transmittances of inhomogeneous
atmospheric paths. In this approximation, the transmittance through the
inhomogeneous path is obtained by substituting a certain hypothetical
homogeneous path with the same transmittance. The homogeneous path can
then be treated by established band model methods. Studies have been
made of the errors incurred when using the Curtis-Godson approximation
and the errors have been found to be negligible for most cases of meteoro-=
logical interest. The objective of this research was to test the
Curtis~Godson approximation for gases obtained by combustion of common
fuels.
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We have tested the accuracy of the Curtis-Godson approximation and
other methods of calculating transmittance of an inhomogeneous path
(e.g., that of Ref. 3) experimentally by measuring spectral absorptances
of hot water vapor and carbon dioxide. To simplify the problem of pre=-
dicting the transmittance through an inhomogeneous gas and to permit easy
comparison of theoretical and experimental transmittances, we used inhomo-
geneous paths that were composed of series of smaller homogeneous zones.

II. THEORY

A. Radiance Equations

Rewriting equation (6) of Ref. 2 in terms of the wave number,
V, instead of the wavelength, A, we obtain
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H(vj, Avj) = j;‘ Nb(vj, T;) [?1_1(v-, Avj) - }i(v-, Avj)]. (1)

i=1

The terms appearing in equation (1) will be defined below. The radiant
flux at an element of the irradiated area is

m
qt Jf
5= j{: H(vj, Avj) ij cos 0 dw (2)
=

W

where qt/A is the radiant flux in watts/cm®. To get BTU/ftZ-sec from
watts/cmz, we multiply by 0.8811. The wave number, v., is at the center
of the wave number interval, Av; (units of v and Av are cm'l). There

are m intervals in the wave number range of interest for heat flux
calculations. The range of interest depends on the temperature and
composition of the gas; for combustion gases, a safe range (not neces-
sarily the minimum range) is 600 em™ to 13,000 em™t. H(v;, Av:) is

the normal spectral irradiance in the line of sight (units watts/cm®-cm™1~
steradian). We have written H as a function of v; and Av; to emphasize
that the numerical value of H depends on the size of the spectral interval,
AVj, as well as on the frequency of the midpoint of the interval, v;.

The subscript i labels a zone (approximately isothermal) in a line of
sight between the element of area, A, of the target and the farthest

edge of the hot gas (or point of occultation if the line of sight is
occulted), 6 is the angle between the normal to the element of area and

the line of sight, dw is a differential solid angle, and the limits of

dw are indicated by w. Np(v;, Tj) is the spectral radiance of a blackbody
(units watts/cm2-cm'l-steradlan) at the temperature T; (degrees Kelvin),
and wave number, vy. Np(v, T) is given by the formula

N = 2¢2 hv2 ' _1.1909 x 10712 42
b = - 3
[exp(hcv/kT) - 1]  [exp(1.439v/T) - 1]

(3)

where e is the base of the natural logarithms, ¢ is the velocity of light
(2.998 x 10'° cm/sec), h is Planck's constant (6.625 x 10727 erg sec),




and k is Boltzmann's constant (1.380 x 1071%® ergs/°K). }i-l(vj’ Avsi) is
the transmittance from the beginning of the first zone to the end o% zone
i-1; similarly, Ty is the transmittance from the beginning of the first
zone to the end of zomne 1i.

B. Combination of Zonal Transmittances

As stated earlier, the integral over solid angle in equation (2)
can usually be carried out by a straightforward numerical integration using
reasonably large intervals. The Planck function in equation (1) can be
considered constant over fairly large values of Av;. Calculation of the
transmittances in equation (1) is more difficult because the monochromatic
transmittance oscillates rapidly within any practical Avy. We will now
concentrate on the problem of determining these transmittances since they
are the only unknowns remaining in the radiance equations. A band model
will be used as a starting point.

In making these transmittance calculations, the band model we
chose to use was the random band model with constant line strengths and
widthst. According to this band model, the transmittance of a homogeneous
gas over a spectral interval containing many lines, can be expressed as
follows:

-ln © = 2x [ y/d] f(x), (4)

in which T is the transmittance, ¥ is the line half-width and d the average
line spacing in the spectral interval considered.

_ _[s/d] ¢

2n [ y/d] )

in which S is the line strength and £ is the length of the optical path.
The function f(x) is the Ladenburg and Reiche function®, whose mathematical
properties are well known and whose values have been tabulated”.

If an inhomogeneous gas has a transmittance, T, then some hypo-
thetical homogeneous sample has the same transmittance if it has certain
values of 7/d and x (or, alternatively, y/d and S/d). The Curtis-Godson
approximation gives us equations (6) and (7)

B Si _ -ln 14
$) T HT) Ty Q

i i

[«N [45]
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which define the band model parameters of this particular homogeneous
sample. The definition is given in terms of the band model parameters
of the individual zones comprising the inhomogeneous path being studied.
In equations (6) and (7), parameters that pertain to any individual zone
i are labelled with the subscript i. The zonal band model parameters
have been expressed in terms of zonal transmittances and zonal x's on
the right side of equations (6) and (7).

The term y/d is obtained by dividing equation (7) by equation (6);
x can then be determined by dividing equation (6) by 2= 7/d. Putting
these values of 7/d and x into equation (4) yields an expression for the
transmittance of the inhomogeneous path in terms of zonal transmittances
and zonal x's,

2 2

-1n Ty ]
f(xi)
-ln T,
i

f(xy)

-1ln <,
TN )]
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. (8)
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Generally, transmittances calculated with equation (8) are not very
sensitive to errors in xj. Therefore, with moderately accurate values

of xj, the accuracy with which 7T can be calculated
the accuracy of our transmittance measurements and
the theory. This is particularly true in the high
where equation (8) reduces to a form in which 7 is
Thus, if all the x values are low (less than 0.2),
equation (8) reduces to

=

-In T

7‘ -1n Ti.

i

should be limited by
the suitability of
and low x regions
independent of xj.
f(x) = x, and

(9)
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If all the xi's are high (greater than 2.0), and f(x) = [2x/x] /_,
equation (8) reduces to

-ln T = {

Equations (8), (9), and (10) are the three formulas we will use
for experimental evaluation of the theory. Equation (8) is the most
general and the most accurate. It can be used for any x values, but
the x values must be known. Equations (9) and (10) are good in the
low and high x regions, respectively. 1In their own regions they give
results that do not differ very much from the ones obtained with
equation (8). They have the advantage that they do not require explicit
x values as long as x is known to be in the proper range. We will apply
equations (8), (9), and (10) to two- and three-zone samples. The formulas,
however, are general and could be applied to any number of zones. Equation
(9) agrees with the Beer-Lambert law.

1/2 -
(-1n ;)% ] . (10)

e >

C. Calculation of Inhomogeneous Transmittances from Band Model
Parameters

The transmittance }j(Vj, Avj) in equation (1) may be expressed
by equation (4) as follows:

-1n T (vy, Avy) = 2n(§/d)i £(x4). (4a)

The terms (;/d)i and §i are the values of v/d and x for the hypothetical
homogeneous sample that has the transmittance Ti(Vj, Avj). Values obtained
from equations (6) and (7) for these parameters in terms of zonal band
model parameters are

i
E PR (5°/d), 4, [(7;/d>h P2+ (/) pﬂ
(7/d)i = " (11)
y (s°/d)y, Py 4y
h=1




and

i 2
() emyrin)
h=1

x{ = 2 (12)

i
2n y (s°/d), Py 4, {(7;/d)h pp + (p/d), p:]
h=1

where the quantities Sj/d and 7y;/d of equations (6) and (7) have been
replaced by ’

o a _
(s°/d), py = s, /d
and

(73/d), P2 + (2/d), pr = 7, /d.

The rormulas involved in calculating }i-l are defined analogously_to
those for Tj (sums from h=l to i-l) except that 15 is defined by T4 = 1.

The terms pﬁ and £, are the pressure of absorbing gas (H,0 or COp) and
the path length of zone h, respectively, and pp is the pressure of
nonabsorbing (broadening) gas (N», etc.). The quantities (S°/d)h and
(7°/d)h are the microscopic band model parameters; they are closely
related to the effective absorption coefficients of Ferriso, Ludwig,
and Abeyta, as will be shown below. Both S°/d and 7°/d are functions
of temperature. The subscripts a and b on 9° stand for absorber and
broadener, respectively. The case where more than one broadening gas
is in the gas mixture for a given zone, or where two species simultane-
ously absorb radiation and broaden the lines of the other species (e.g.,
CO, and H-0 in the region near 3500 cm™1), is easily handled by these

equations. For the case of several broadening gases the term (7’§/d)h Py




in equation (6) is merely replaced by

EZ (72/d), Py

S

where the summation over the index s indicates that one should sum the
product of partial pressure and (7°/d), for each species (note that

(72/d), depends on the absorbing gas as well as on the broadening gas)

for each zone h. For the spectral regions where two gases both absorb
radiant energy, we first compute T;(Vv;, Av;) for each absorbing gas sepa-
rately, then multiply the two ?i(vj, vi) %o get the effective %i(Vj, AVj)
to be used in equation (4a). For example, the case of overlapping Hs0
and CO- bands mentioned above would use the formula

}i(v-, Avj) = [}iH2O (vs> ij)} [?1C02 (vs, Avj)1 . (13)

In the above calculation of the effective ?i(Vj, AVj), for spectral
regions where two gases simultaneously absorb energy, one should treat
the second gas as a broadening species when the first is treated as the
absorbing gas, and vice versa; e.g., in the CO, calculation, we would use

[-]
(7 ga0-c0.’9) Puoo

as one of the terms in the sum of (7§/d)h pﬁ. The special case where
there is only an absorbing gas in a zone is easily handled by setting
Py = 0 in equation (11) and equation (12).

In a recent report®, Ferriso, Ludwig, and Abeyta calculate
transmittance with a random band model having a different distribution
function from the one we have employed. They use the equation

-1/2

K (v) u
eff } (14)

I TS Kegg (M) u {1 T T A




where

a(v) = 7/d, (15)
Kogg = s°/d = 2x/py 4 x 7/4d, (16)

and
u = p,L. (17)

Equations (15), (16), and (17) are the transformation equations from our
band model parameters x, (y/d), pa, and £ to another set of equally useful
parameters Keff, u, and a. With the help of these transformation equations,
the transmittance of an inhomogeneous sample can be calculated from this
alternative set of band model parameters using equations (6), (7), and (14).
According to Plass®, equations (4) or (14) agree within 10 percent. Thus,
the choice of equations (4) or (14) should not be too critical. However,

at the risk of being redundant, it should be emphasized that Keff is mot

a "true" absorption coefficient and was never intended to be used as such
in the "exact" integral equation of radiant energy transport,

ITI. EXPERIMENTAL

A. Apparatus

Measurements were made at a variety of temperatures, pressures,
and path lengths. Figure 1 shows a schematic diagram of the optical
system used for the longest optical paths. With this system, the chopped
signal from a globar makes three passes through each of two furnaces and
then enters a small grating monochromator with which spectral measurements
are made. Each furnace contained an 8=-inch gas cell, thereby providing
two individually isothermal zones in series with a 24~inch optical path
per zone. The temperatures and pressures of the two zones were independ-
ently variable. The globar signal was chopped before the sample to
eliminate interference by sample emission.

To make measurements with shorter optical paths we could, by
changing the mirrors of the fore optics, pass the globar signal through
each furnace only once as shown in Figure 2. We used this single pass
mode of operation with a l1%-inch cell to study short optical paths and
with an 8-inch cell for intermediate paths.



The furnace-heated gas cells are useful for temperatures up to
about 1000°C. For measurements at higher temperatures, flat flame
burners such as those illustrated in Figure 3 were employed. 1In the
burner assemblies, each zone consisted of a 2-inch x 2-inch burner
flanked by a pair of %-inch x 2-inch burners. Hot CO, was generated
by burning carbon monoxide with oxygen on the 2-inch x 2-inch burner
and adding a controlled amount of cold COs to each burning mixture to
regulate the flame temperature. The flame propagation rate was adjusted
by adding measured traces of hydrogen. '"Guard" flames on the %-inch x
2=inch burners produced combustion products that had the same temperature
as the CO», but were all transparent at the wavelengths studied.
Therefore, each zone was simply an isothermal specimen of CO, as far as
the spectroscopic observations were concerned. Measurements were made
on individual zones to obtain their transmittances and infrared emission-
absorption temperatures as well as on two- and three-zones in series to
obtain the transmittances of the inhomogeneous assemblies. A single-pass
optical system was used with the flat flames,

During every measurement, the entire optical system outside the
sample was flushed with dry nitrogen to minimize absorption by atmospheric
Hgo and COZ-

B. Procedure

The experimental procedure for two-zone cell measurements was
as follows: We used a sample in-sample-out technique to obtain the
transmittances of the individual zones and of the two-zone assembly.
The procedure consisted of five steps as follows:

(1) A spectral scan was made with both cells evacuated to
measure the globar signal,

(2) the first cell was filled with sample and the spectral
scan repeated to measure the transmittance of the sample in the first
cell,

(3) the second cell was filled and the spectral scan again
repeated to obtain the transmittance of the two samples in series,

(4) the first cell was evacuated and the transmittance of the
second cell was then determined, and

(5) the second cell was evacuated and the globar signal was
rechecked to detect any signal drift that might have occurred during

the experiment.

After making these measurements, the two-zone transmittance was
calculated from the transmittances of the two individual zones using the
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Curtis=Godson approximation. The calculated value was then compared with
the measured two-zone transmittance.

A similar sample in-sample-out technique was used for two-zone
flame studies. A zonal sample was in the beam whenever the three flames
of the zone were burning. For sample~out measurements, the three flames
of the zone were replaced by streams of nitrogen. The same five-step
procedure described for cell measurements was followed.

For the three-zone flame measurements, one of the flames had
to be turned off and relit. Otherwise, the technique was the same as
for two zones.

I7. RESULTS

Hot water vapor spectral transmittances were measured at two
frequencies, 3990 cm™t and 3503 cm™!. We believe that these are repre-
sentative frequencies in the water vapor spectrum, and the observations
made should be typical of what may be expected at other frequencies.

Table I compares measured and calculated transmittances at
3990 cm~t for thermally inhomogeneous optical paths in the high x region.
Properties of zone 1 are labelled with the subscript 1 and properties of
zone 2 are labelled with the subscript 2. Zone 1 had a temperature of
1273°K and the temperature of zone 2 was half of that, 637°K. The pres-
sures of the water vapor in the two zones are given in columns 1 and 2.
Columns 3 and 4 give the measured transmittance of zones 1 and 2,
respectively. Column 5 shows the measured transmittance of the combined
two-zone sample. The values of x; and x5 are given on the line above
the table. These values of x were calculated from the path length of
each cell and from the value of x/£Z, which was determined by a modified
curve-of-growth method'® from the transmittances for both short and long
isothermal paths at the appropriate temperatures. The calculations
involved in column 6 were made with equation (8) which is the equation
that uses the exact values of x; and x,. This calculated two-zone
transmittance is always higher than the measured transmittance by
approximately .0l to .02, as shown by a comparison of columns 5 and 6.

The calculations involved in column 7 were made with equation (10)

which is the equation that uses the high x approximation and in which the
x values do not occur explicitly. Although x5 is not much above 2.0,
which we arbitrarily chose as the lower limit of the high x range, the
differences between columns 6 and 7 are only .006 to .0l.

Tables II and III give similar data for measurements made with

both zones at the same temperature. Here the only inhomogeneities are
due to pressure differences. The discrepancies between measured and

11



calculated two-zone transmittances are about the same as before. Note
that when the pressures as well as the temperatures in the two zones are
essentially the same, this discrepancy is not generally any smaller.

In this case, where the inhomogeneity is negligible, the discrepancy
cannot be due to the Curtis-Godson approximation. Therefore, the
Curtis-Godson approximation may not be the major source of error in

any case. The discrepancy may be primarily due to the error in the

band model representation of the real spectrum.

For Table II, x5, as well as x,, is above 3, so the discrepancies
between columns 6 and 7 are a little lower than in Table I. For Table III,
Xo, as well as x;, is below 3, so the discrepancies between columns 6 and
7 are a little higher than in Table I.

Table IV gives the results of medium x measurements. This is
the region we were most worried about because it is the region in which
the transmittances are most sensitive to errors in x and the region
where the Curtis-Godson approximation is expected to be least accurate.
However, the errors appear small.

In this region, neither the high nor the low x approximation is
expected to be accurate. Columns 4 and 5 show that the errors observed
with the high x approximation are still much smaller than those produced
by the low x approximation.

Table V is concerned with measurements in which one zone was
in the medium x range and the other had a low x. Transmittance of the
two zones in series is very little lower than the transmittance of the
8-inch zone alone. Since the transmittance of the 8-inch zone was part
of our input in our calculations, these calculations were not likely to
be very wrong, and they are not. This table demonstrates the difficulty
of trying to test the Curtis-Godson approximation in the low x region
with water vapor. When x is low, water vapor just does not provide
enough absorption.

High absorptance with low x values can be observed in the
spectrum of hot carbon dioxide where many overlapping hot bands make
the average line spacing very small. Table VI shows the results of
measurements on two-zone samples of hot CO-. The first two rows are
for wavelengths where x was low at the experimental temperatures. At
the third wavelength, 4.179-u, x was high. For the first and second
wavelengths differences between measured values and those calculated
with the low x approximation were well within the experimental error.
At the third wavelength, the high x approximation gives a comparably
accurate value of .335 for the two=-zone transmittance.

Table VII shows the results of measurements on three-zone
samples of hot CO-. For each of the three wavelengths at which

12




measurements were made, x is low. Thus, it is not surprising that
equation (9), the low x approximation to equation (8), gives a calculated
transmittance for the combined sample which is in good agreement with

the experimental value.

As mentioned in the introduction, we have calculated the
transmittance of inhomogeneous gas samples by methods other than the
Curtis-Godson approximation. The Sakai approximation has already been
mentioned. Another interesting approach has been that suggested by
Plassll, who discussed the generalization to two cells in series of the
random band model with an exponential distribution of line strengths.

We used this method (equation (58) of Ref. 11) to calculate the combined
transmittance for all the cases involving H-O0. In no case was the result
in significantly better agreement with experiment than the Curtis=-Godson
approximation. Sakai's appro: imation gave results much worse than the
Curtis-Godson approximation for the combination of a high x zone with a
high x zone, and since the form c¢f Sakai's approximation is similar to
that of equation (58) of Ref. 11, we feel that Sakai's approximation
would give no better results in the intermediate and low x cases. Both
Sakai's approximation and that of Ref. 11 become progressively more
complex as the number of zones is increased beyond two.

CONCLUSIONS

We have now tested the Curtis-Godson approximation through the
gamut from high x calculations through medium to low x calculationms.
Measurements of hot water wvapor at 3503 cm™t were so much like the
results at 3990 cm~' that they lead to the same conclusions. This
similarity corroborates the hypothesis that it is likely that the
behavior at these two frequencies is typical of the water vapor
spectrum.

This study indicates that the accuracy of the Curtis-Godson
approximation is at least comparable to that of the band model theory
we used. Consequently, it should be possible to calculate transmittances
of inhomogeneous and homogeneous specimens with similar accuracy, when-
ever the band model parameters are available. The other approximations
which were tested resulted in more complex calculations with no gain in
accuracy over the Curtis-Godson approximation.

In calculations of radiances of rocket plumes, the eriurs in
currently available band model parameters and flow field information
are likely to introduce much larger errors than the Curtis-Godson
approximation or the band model theory.

13




Two-Zone Water Vapor Transmittance at 3990 cm~

Table

Optical Path:

I

1

24" per zone

T, = 1273°K T, = 637°K
X, = 3.49 X, = 2.53
Measured Calculated T
Transmlttance
p, (mm) | p.(mm) T T, T From From
1 2 1 2 Eq. (8) | Eq. (10)
49 | 53 45 1 0711 | L6022 .630 .638
100 104 .597 | .503 { .398 Ay Loy
151 | 151 443 | .358 | .o47 .260 .270
101 51 573 1 .722 | .501 518 .525
148 52 52 1,710 | 402 J15 JA21
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Table II

Two-Zone Water Vapor Transmittance at 3990 em™t

Optical Path: 24" per zone
T1 = T2

1273°K

Measured Calculated T
Transmlittance ’

|

From From

p, (mm) | p,(mm) T T, 2o | 5 oy

53 53 .720 | .729 |.621 628 634

102 105 571 | 566 | 425 443 A450
150 153 JA38 | 443 | .284 .306 .314
51 104 743} .571 }.515 524 .530

56 146 JT24 | Jheh | M19 428 435




Two~Zone Water Vapor Transmittance at 3990 cm~

Table III-
1

Optical Path: 24" per zone
T, = T, = 637°K
Xy =X, = 2.53
l
Measured Calculated T
Transmittance
- TRRSATERNCE e i
— } L
p, (mm) | p_(mm) T T T {{ From E From
1 2 1 2 | Eq. (8)  Eq. (10)
4 % :
51 50 721§ .728 | .620 | .626 |  .63h
102 100 .510 | .528 | .368 | .38% . .395
147 148 37400381 L2201 | .24 .252
148 59 | .383{.677 .339 | 345 .355
. ¥

105 49 513 | 726 U462 i 468 ATT
{ }3

102 153 507 1.365 ¢ ,273 %g .286 297
)
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Table IV

Two-Zone Water Vapor Transmittance at 3990 em™t

Optical Path: 8" per zone
T, = 1273°K T, = 637°K
x; = 1.16 x, = 0.84
Measured Calculated T
_Transmlttance
p-(mm) { p,(mm) | = T T From From i From
il 2 1y e Eq. (8) Eq. (10) {Eq. (9)
i
)
50 { 50 L8461 849 { .77 772 791 ¢ .T718
100 | 100 | .7A4}.728 |.617 || .619 648 | .5h2
150 § 150 | .655 | .625 ! .496 || .496 530 | .409

freenra

17




Table V

| Two-Zone Water Vapor Transmittance at 3990 em™ L
Tl = 1273°K T2 = 637°K
Ll = 8" "2 = 1.5"
xl = 1,16 x2 = ,16
Measured Calculated T
Transmittance
p (mm) p (mm) T T T From From
1 2 1goe Eq. (8) | Eg. (9)
‘ 50 50 .853 ] .960 { .840 .836 .827
! 100 100 751§ .923 |.723 1] .720 .682
150 150 . 65014 ,882 ] .,612 607 .563
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Table VI
Two-Zone CO, Transmittances
Optical Path: 2" per zone

Atmospheric Pressure

T, = 1460°K T, = 2740°K
Wavelength Measured Transmittances Calculated T
(microns) T, T, T From Eq. (9)
l" 0555 ] 085 0099 -009 0008
4.865 959 | .589 | .572 564
4.179 340 | .838 |} .325 «285
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Table VII

Three-Zone CO, Transmlttances

Optical Path:

Atmospheric Pressure

2" per zone

Tl = 1460°K; T2 = 2170°K; T3 = 2760°K
Wavelength Measured Transmittances Calculated T
(microns) "1 PFrom Eq. (9)
| Te | "3 | Ttotal
4,555 ,068 | 014 | .098 .000 .000
. 4,696 745 1 .252 | L2090 | .0k9 .055
| 4.865 952 | 734 | .601 | .41k 415
i

20
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Fig.

3.

Three-zone burner assembly.
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